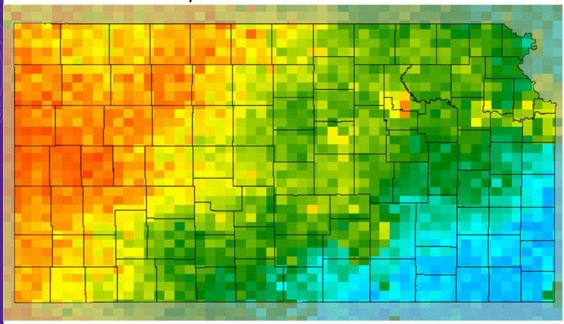
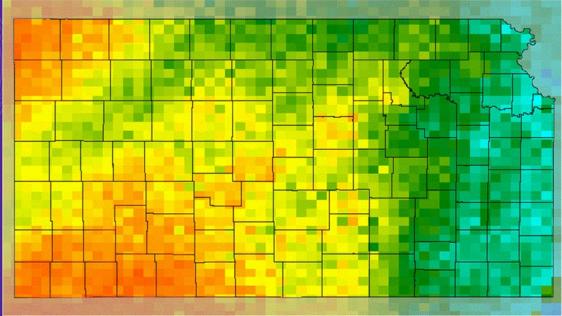
What does pre-planting soil moisture tell us about final corn yields?


Micah Cameron-Harp, Parker Vulgamore, Jennifer Ifft, and Jesse Tack

Risk and Profit Conference August 21 & 22, 2025

Daily Soil Moisture

January 1st to March 15th, 2021



Data source: NASA-USDA Enhanced SMAP

KANSAS STATE

Daily Soil Moisture

January 1st to March 15th, 2022

Data source: NASA-USDA Enhanced SMAP

KANSAS STATE

Are decisions made based on early season soil moisture information supported by measurable impacts on corn yields?

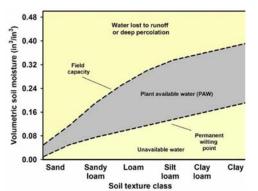
Data Sources

Yield Data: USDA Risk Management Agency (1990-2022)

- Precise county yield records
- •Ability to control for irrigation status

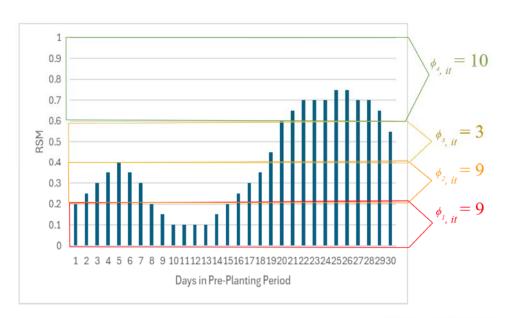
Soil Moisture Data: NASA SPORT-LIS (1km² daily measurements)

- •High-resolution standardized moisture data
- Longer time series than alternatives


Methods: Scaling Soil Moisture Data to the County Level Create crop masks Step 1 • Used USDA NASS CDL (2002-2021) • Kept grid cells that grew corn, wheat, or soybeans in ≥ 50% years • Output: binary map of "consistently cropped" land Apply to soil moisture Step 2 Converted volumetric SM to RSM Multiplied by crop mask → keeps only relevant cropland pixels Aggregate to counties Step 3 • Used spatially-weighted median to account for partial grid cell overlap w/ counties • Example: grid cell 50% in county = 50% weight

Relative Soil Moisture (RSM) Data

 Soil moisture influence depends on soil hydrological properties (Kisekka, et al. 2017, Archontoulis 2021):

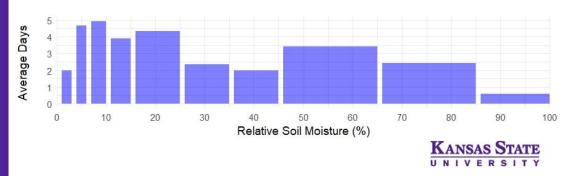

$$\textit{Relative soil moisture} = \frac{\textit{Volumetric soil moisture} - \textit{wilting point}}{\textit{Saturation} - \textit{wilting point}}$$

- Interpretation:
 - 0 = wilting point (no plant available moisture)
 - 1 = saturation (maximum water capacity)
- Optimal range around 0.54
- · Stress thresholds:
 - Below 0.2: drought conditions
 - Above 0.8: excess moisture stress

Methodology: Non-Parametric Soil Moisture Exposure Model

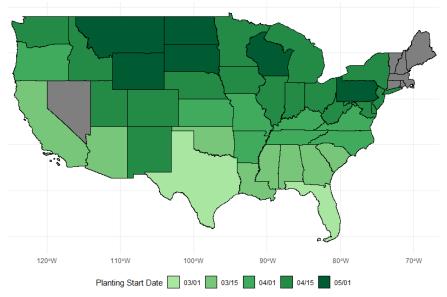
Specifying Exposure Bins

Why Bin Selection Matters:


- Too many bins/regressors may cause **overfitting** (Schwarz, 1978).
- Too few bins may overlook important nonlinear effects.

Bin Definition and Calculation:

• Grouped into **100 bins**, each representing a 1% increment of Relative Soil Moisture (RSM).


Data-Driven Bin Selection Process:

• K-fold cross validation procedure.

"Early Season" Definition

- Use dates from Deines et al. (2023)
- Examine the 30 days prior to the date when 10% of the corn crop is planted.

Regression Model Specification

$$\ln y_{it} = \sum_{k} \beta_k \phi_{k,it} + z_{it} \delta + c_i + \varepsilon_{it}$$

Where:

 $ln y_{it}$: natural logarithm of yield for county i in year t

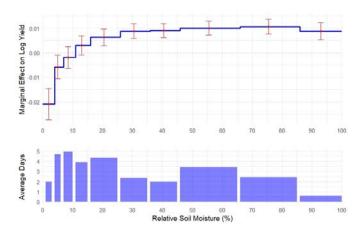
 $oldsymbol{\phi}_{k,it}$: number of days county i in year t was exposed to relative soil moisture within bin k

 $(oldsymbol{eta}_k)$: marginal impact of one additional day of exposure to relative soil moisture in bin k

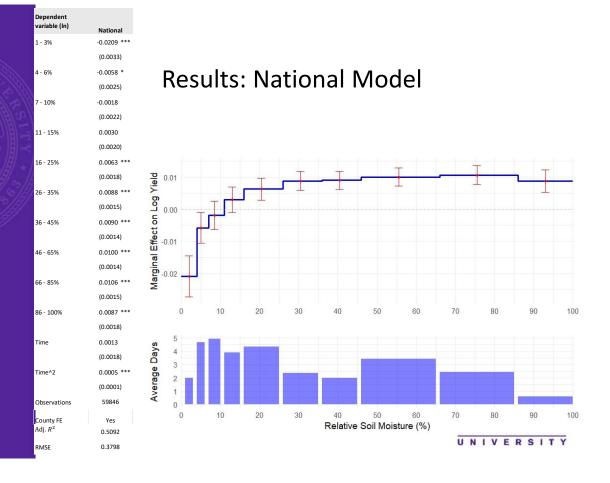
 \mathbf{z}_{it} : control variables, such as a quadratic time trend (t and t^2) to account for technological change.

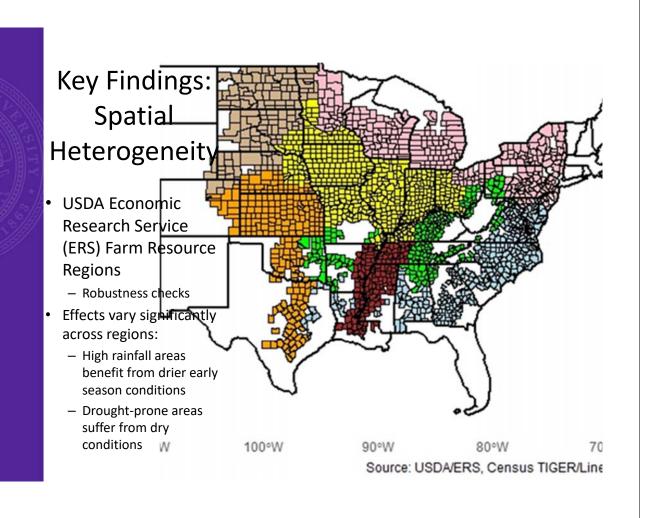
 (c_i) : county fixed-effects to control for unobserved heterogeneity

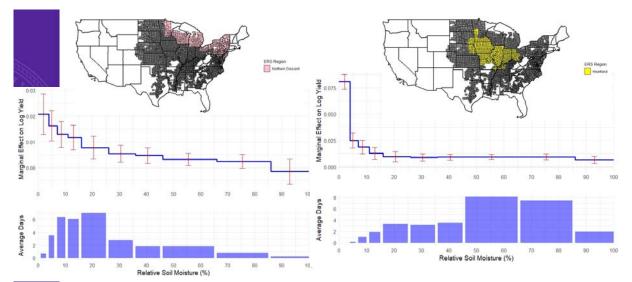
Finally, we expect moisture conditions to be correlated in adjacent counties, so we allow the error terms (ε_{it}) to be spatially correlated using Conley standard errors (Conley 1999).

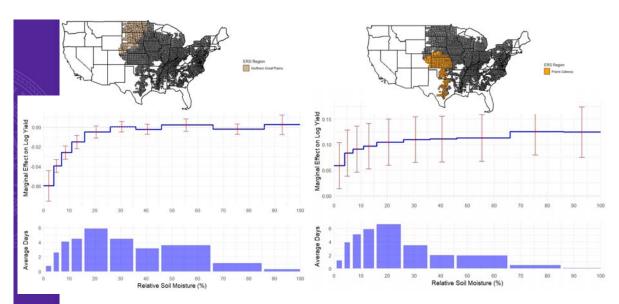

Results: National Model

What Do the Coefficients Mean?


 Each coefficient represents the effect of one additional day spent within a specific soil moisture bin. There are 30 days total. Adding a day to one bin means taking it away from another.


Overall Insight:


- Exposure to very low soil moisture (1–3% RSM) is associated with the strongest yield reduction
 - Coefficient: –0.0209
- Typical day falls in 45–65% RSM bin
 coefficient: 0.01
- Estimated impact: Shifting one average day to driest bin → ~3% yield decrease
 - 0.01 + 0.0209



Key Findings: Spatial Heterogeneity

In high-productivity regions (e.g., Heartland, Northern Crescent), low early season soil moisture is associated with higher yields

- Excess moisture is often more harmful than drought in these areas:
 - Delayed planting, Nutrient leaching, Waterlogging (Bille & Rogna 2021; Li 2022)
- Heartland model result:
 - 1–3% RSM bin → coefficient: 0.0807 (99% confidence)
 Avg. day = 0.0095 → → >7% yield increase

Key Findings: Spatial Heterogeneity In drier regions like the Northern Great Plains and Prairie Gateway, low RSM is negatively associated with yield

- These regions have deep, high-capacity soils:

 - Crops rely on subsurface moisture early on
 Once depleted, they become rainfall-dependent
- Northern Great Plains model result:
 - 1–3% RSM bin → coefficient: –0.0597
 - Avg. day = 26–35% RSM (coefficient = 0.0003)
 - \rightarrow \rightarrow ~6% yield reduction

Summary and Contributions

Key Findings:

- Strong evidence of a nonlinear relationship between early season soil moisture and yield outcomes.
- Clear indication of regional heterogeneity
- Demonstrated method's effectiveness in capturing critical moisture thresholds without imposing restrictive assumptions.

Thank you!

mcameronharp@ksu.edu

mcameronharp.com

	National	Heartland	Northern Crescent	Northern Great Plains	Prairie Gateway	Eastern Uplands	Southern Seaboard	Mississipp i Portal
1 - 3%	-0.0209 ***	0.0807 ***	0.0207 ***	-0.0597 ***	0.0588 *	0.0381	0.0128	0.0297 ***
	(0.0033)	(0.0036)	(0.0040)	(0.0079)	(0.0230)	(0.0319)	(0.0136)	(0.0083)
4 - 6%	-0.0058 *	0.0251 ***	0.0163 ***	-0.0394 ***	0.0832 ***	0.0389	0.0176	0.0301 ***
	(0.0025)	(0.0036)	(0.0030)	(0.0033)	(0.0231)	(0.0310)	(0.0137)	(0.0077)
7 - 10%	-0.0018	0.0188 ***	0.0129 ***	-0.0259 ***	0.0911 ***	0.0413	0.0188	0.0327 ***
	(0.0022)	(0.0034)	(0.0026)	(0.0034)	(0.0232)	(0.0312)	(0.0135)	(0.0080)
11 - 15%	0.0030	0.0128 ***	0.0117 ***	-0.0152 ***	0.0969 ***	0.0406	0.0224	0.0324 ***
	(0.0020)	(0.0028)	(0.0024)	(0.0034)	(0.0229)	(0.0307)	(0.0136)	(0.0073)
16 - 25%	0.0063 ***	0.0098 ***	0.0078 ***	-0.0051	0.1048 ***	0.0395	0.0215	0.0332 ***
	(0.0018)	(0.0025)	(0.0022)	(0.0031)	(0.0230)	(0.0303)	(0.0137)	(0.0074)
26 - 35%	0.0088 ***	0.0089 ***	0.0055 **	0.0003	0.1099 ***	0.0305	0.0236 .	0.0380 ***
	(0.0015)	(0.0018)	(0.0017)	(0.0027)	(0.0229)	(0.0303)	(0.0137)	(0.0077)
36 - 45%	0.0090 ***	0.0093 ***	0.0047 **	-0.0023	0.1112 ***	0.0389	0.0248 .	0.0395 ***
	(0.0014)	(0.0014)	(0.0016)	(0.0026)	(0.0230)	(0.0300)	(0.0137)	(0.0078)
46 - 65%	0.0100 ***	0.0095 ***	0.0032 **	0.0020	0.1135 ***	0.0327	0.0281 *	0.0415 ***
	(0.0014)	(0.0013)	(0.0012)	(0.0032)	(0.0234)	(0.0301)	(0.0137)	(0.0079)
66 - 85%	0.0106 ***	0.0095 ***	0.0024 .	-0.0020	0.1254 ***	-0.0096	0.1027 ***	0.0428 ***
	(0.0015)	(0.0015)	(0.0014)	(0.0027)	(0.0235)	(0.0316)	(0.0139)	(0.0082)
86 - 100%	0.0087 ***	0.0069 ***	-0.0015	0.0023	0.1247 ***			0.0496 ***
	(0.0018)	(0.0016)	(0.0025)	(0.0051)	(0.0253)			(0.0089)
Time	0.0013	0.0110 ***	0.0091 ***	0.0267 *	-0.0523 ***	0.0088 *	-0.0012	0.0061 *
	(0.0018)	(0.0017)	(0.0019)	(0.0105)	(0.0086)	(0.0039)	(0.0030)	(0.0028)
Time^2	0.0005 ***	0.0001 *	0.0002 **	0.0003	0.0020 ***	0.0002	0.0005 ***	0.0003 ***
	(0.0001)	(0.0000)	(0.0001)	(0.0003)	(0.0002)	(0.0001)	(0.0001)	(0.0001)
N	59846	16554	9081	4073	7324	7116	9827	4267
Adj. R- squared	0.5092	0.4300	0.4244	0.4647	0.2539	0.3189	0.3286	0.4228
RMSE	0.3798	0.2247	0.2465	0.5502	0.6438	0.3105	0.3593	0.2093

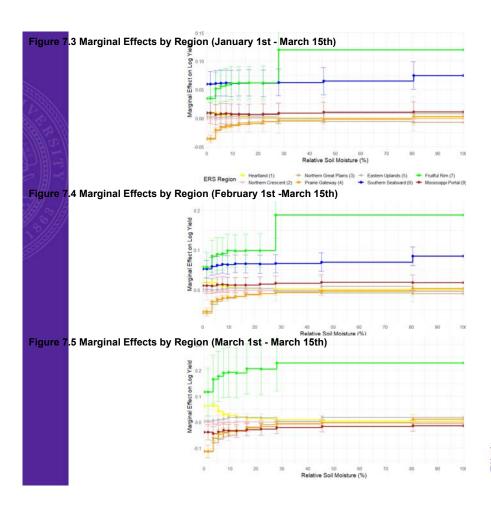


Figure 7.1 Distribution of Adjusted R2 Values Over All Breakpoint Specifications

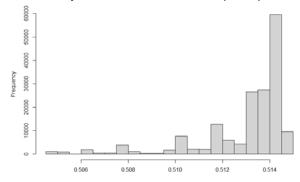
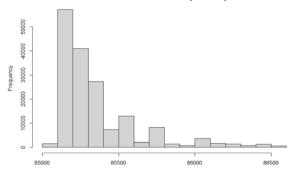
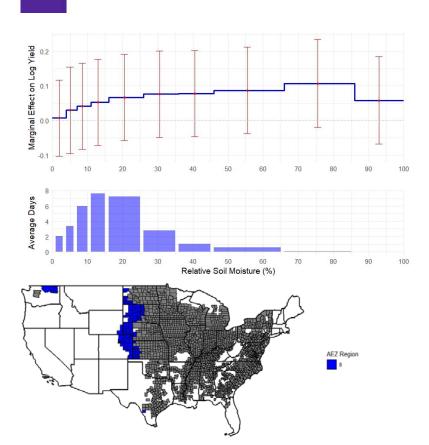


Figure 7.2 Distribution of BIC Values Over All Breakpoint Specifications

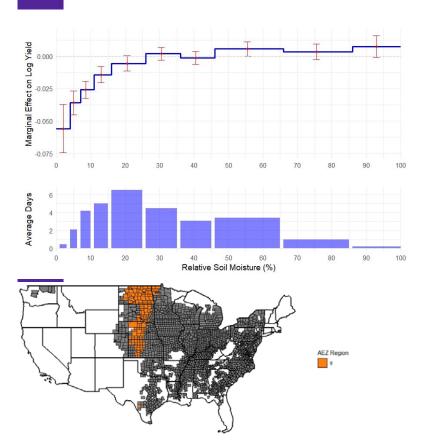
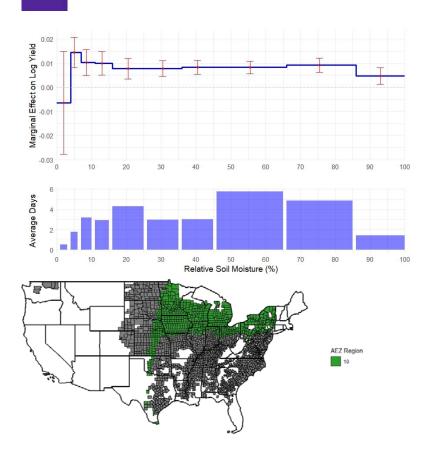


Figure 7.6 AEZ 8



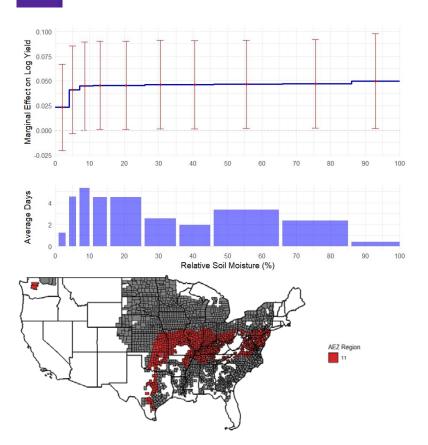
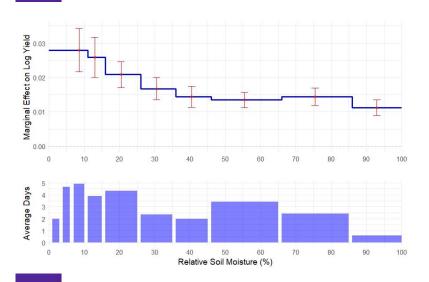

KANSAS STATE

Figure 7.8 AEZ 10


KANSAS STATE

KANSAS STATE

Figure 7.11 Iowa Model

