# Economic Feasibility of Alternative Crops in Arid and Semi-Arid Areas: The Case of Tomato in Southwest Kansas

Gyventzly Eugene and Vincent Amanor-Boadu



#### Outline

Research framework – question and objectives

Research methods

Preliminary results



### Motivation: Conserving the Ogallala

### Ogallala is depleting

At least that is what the Kansas Water Office and Kansas Geological Survey tell us

We need to conserve water without giving up income

KANSAS STATE

### Prime Objective



Evaluate the economic feasibility of migrating from traditional crop production to alternative crops and production technologies with the view of sustaining farmer incomes



### Assumptions

- 20-year KFMA average net farm income (2004-24) = \$118,314
- Typical acreage for Southwest KS farmer = 1,467.2 acres
- Typical crops planted: Corn (29.5%), Sorghum (22.6%), Soybeans (4.5%), & Wheat (43.4%)
- Average irrigation water used for typical crops on typical acreage = 15,018 ac-in
- Can we find a crop and production technology that will produce at least the average income with much less water requirements?

KANSAS STATE

#### Greenhouse Tomato: An Alternative?



Almería, in southeastern Spain, is one of the driest places in Europe It has harness its groundwater and sunshine to become a major hub of greenhouse agriculture in the world



#### Greenhouse Tomato: An Alternative?



- Since 2000, U.S. fresh tomato imports ↑176%
- Greenhouse share of imports:
  - Early 2000s → **14**%
  - Early 2020s → **60**%
- Growth driven mainly by Mexico's year-round greenhouse expansion



### Greenhouse Tomato: An Alternative?



In 2024, United States imported \$3.63B of tomatoes

Opportunity for import replacement and contribute to addressing the trade deficit



# Economic Feasibility of Greenhouse Tomato Production in Southwest Kansas

- Given the opportunity for import replacement and the opportunity to save water, is greenhouse tomato production economically feasible?
- Considerations:
  - CAPEX for a greenhouse
  - OPEX for a greenhouse
  - Yield and price assumptions
  - Cost of marketing



# Economic Feasibility of Greenhouse Tomato Production in Southwest Kansas

- CAPEX
  - Greenhouse
  - Heating and cooling system
  - Pumps & plumbing system
  - Irrigation & production system
  - Electricals
- OPEX
  - Seed
  - Fertigation
  - Fungicides and insecticides
- Revenue
  - Yield: 10-60 pounds/plant/year
  - Price: \$0.50-\$2.50/pound
  - Marketing cost = 15% of price/pound











- Range: \$5-\$50/sf
- We used the Quonset at \$10/sf
- Total square footage per greenhouse = 2,304 sf
- Opex for the Quonset estimated at \$2.52/sf
- Square feet/acre = 43,560 sf adjusted for spacing between houses = 43,400 sf
- Number of greenhouses/acre = 19

KANSAS STATE

# Quonset Greenhouse was the Cheapest Option for Desired Solution



Polyethylene-covered (Cheapest option)









#### Greenhouse Economics



Total sf = 43,400

- CAPEX ≈ \$10/sf
  - Total CAPEX = \$432,929.69
- Direct Cost = \$2.52/sf
  - Total Direct Cost = \$109,253.47
- Fixed Cost = \$63,988

Revenue Side

- Yield per plant = 20 lbs.
- Total Production = 200,000 lbs.
- Price per lb. = \$1.31
- Gross Revenue = \$262,000
- Net Revenue = \$61,567.34

KANSAS STATE

### Financial Analysis: NPV at 8% over 20 Years

| NPV         | \$171,547.56 |
|-------------|--------------|
| IRR         | 13%          |
| PBP (years) | 7.03         |



| Sensitivity           | Project     | Limit       |
|-----------------------|-------------|-------------|
| Yield (lb.)           | 20          | 18          |
| Price                 | \$1.31      | \$1.22      |
| Variable Cost per lbs | \$0.31      | \$0.41      |
| Fixed Costs           | \$63,988.00 | \$82,775.63 |

KANSAS STATE

### Sensitivity Analysis

|       |           | YIELD             |                   |                   |                   |                 |                  |
|-------|-----------|-------------------|-------------------|-------------------|-------------------|-----------------|------------------|
|       | \$171,548 | 10.00             | 18.12             | 20.00             | 30.00             | 50.00           | 60.00            |
|       | \$ 0.50   | \$ (1,479,175.52) | \$ (1,339,948.78) | \$ (1,307,654.53) | \$ (1,136,133.54) | \$ (793,091.56) | \$ (621,570.57)  |
|       | \$ 0.62   | \$ (1,373,692.67) | \$ (1,148,843.57) | \$ (1,096,688.83) | \$ (819,684.99)   | \$ (265,677.31) | \$ 11,326.53     |
| PRICE | \$ 1.2    | \$ (825,348.25)   | \$ (155,397.93)   | \$ (0.00)         | \$ 825,348.25     | \$ 2,476,044.76 | \$ 3,301,393.02  |
| THIOL | \$ 1.31   | \$ (739,574.47)   | \$ 0.00           | \$ 171,547.56     | \$ 1,082,669.59   | \$ 2,904,913.66 | \$ 3,816,035.70  |
|       | \$ 1.96   | \$ (146,067.46)   | \$ 1,075,267.54   | \$ 1,358,561.58   | \$ 2,863,190.63   | \$ 5,872,448.72 | \$ 7,377,077.76  |
|       | \$ 2.61   | \$ 447,439.55     | \$ 2,150,535.08   | \$ 2,545,575.60   | \$ 4,643,711.66   | \$ 8,839,983.77 | \$ 10,938,119.82 |



# Tomato Water Needs and Output Assumptions

- Tomato water needs = 0.53 gallons/plant/day (176.5 gallons/plant/season)
- Tomato planting density = 10,000 plants/acre
- Based on the foregoing assumptions
  - Total Water Consumed = 0.00644 acre-in/plant \* 10,000 plants = 65 acin/year



### Based on Our Assumptions

| Indicator           | Traditional Enterprise |  |
|---------------------|------------------------|--|
| Net Income          | \$118,314              |  |
| Land use (acre)     | 1,467.21               |  |
| Water (Acre-inches) | 15,018                 |  |



The Net Income per ac-in is: \$7.89

| Indicator           | Tomato Enterprise |  |  |
|---------------------|-------------------|--|--|
| Net Income          | \$61,567.34       |  |  |
| Land use (acre)     | 1                 |  |  |
| Water (Acre-inches) | 65                |  |  |



The Net Income per ac-in is: \$947.2

Tomatoes earn 120× more income per ac-in of water than traditional crops.

KANSAS STATE

### Based on Our Assumptions

We would need about **2 acres of greenhouse tomatoes** to match or exceed the net income from a traditional farm enterprise

In this scenario water use will reach 125 acreinches



### Traditional vs Tomato Enterprise

| Indicator           | Traditional Enterprise | Tomato Enterprise |  |
|---------------------|------------------------|-------------------|--|
| Income              | \$118,314              | \$118,314         |  |
| Land use            | 1,467.21               | 1.92              |  |
| Water (Acre-inches) | 15,018                 | 125               |  |



| Indicator           | Saving |  |
|---------------------|--------|--|
| Land use            | 99.87% |  |
| Water (Acre-inches) | 99.17% |  |





## Thank You

Discussion, Questions and Answers





| Type of Risk    | Source of Risk              | Greenhouse Tomato                                                        | Mitigation Strategies                                                                   |
|-----------------|-----------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Financial       | Capital investment          | High capital investment setup (structure, climate control, hydroponics)  | Long-term financing, public–private partnerships, cost-sharing, gradual expansion       |
| Energy          | Heating, cooling, lighting  | Exposure to energy price volatility                                      | Invest in renewable energy (solar, biomass), improve insulation, energy-efficient HVAC  |
| Labor           | Skilled workforce           | Continuous need for trained staff (crop care, IPM, climate monitoring)   | Workforce training programs, automation technologies                                    |
| Climate/Weather | Extreme heat or cold        | Protected indoors, but extreme events increase cooling/heating costs     | Climate-adapted design (evaporative cooling, thermal screens), emergency backup systems |
| Pests/Diseases  | Indoor outbreaks            | Rapid spread risk in enclosed system despite lower pest pressure overall | Integrated Pest Management (IPM), biological controls, strict hygiene protocols         |
| Market          | Price & demand fluctuations | Reliant on premium markets; oversupply or imports depress returns        | Forward contracts, diversify crop portfolio (leafy greens, peppers), local branding     |
| Technology      | System dependency           | Failure in fertigation, HVAC, or power can cause catastrophic crop loss  | Redundant pumps, backup generators, preventive maintenance schedules                    |

