Economic Analysis of Crop Rotation Net Returns and Water Quality in the Cheney Lake Watershed

Michael Langemeier

2011 Water and Future of Kansas Conference September 30, 2011

Introduction

- · Crop Rotation Analysis, Cheney Lake Watershed
 - Continuous Wheat
 - Wheat/Grain Sorghum/Soybeans
 - Tradeoff between Net Return, Risk, and Water Quality
- KFMA Analysis, No-Till versus Mixed Tillage
 - Cropping Mix
 - Crop Intensity
 - Financial Performance

1

Crop Rotation Analysis

- Continuous Wheat
- Wheat/Grain Sorghum/Soybean
- Wheat/Wheat/Grain Sorghum/Grain Sorghum

Crop Rotation Analysis

- Corn/Soybean
- Alfalfa/Wheat

- Data for Budgets and Risk Model
 - Soil Type: Nalim Loam, 0 to 1% slopes
 - Water Quality: SWAT
 - Crop Yields: SWAT
 - Cost and Price Estimates:
 - Farm management guides
 - · Agronomic publications
 - Kansas Agricultural Statistics

Crop Rotation Analysis

- Water Quality Variables
 - Runoff
 - Water yield
 - Sediment yield
 - Total Phosphorus
 - Organic
 - Mineral
 - Soluble

Crop Rotation Analysis

- Water Quality Indices
 - To facilitate comparisons among crop rotations, the values of the three water quality variables were assigned a value of 1.0 for the base rotation, continuous wheat under a conventional tillage production system.

5

6

Crop Rotation Analysis

- Target MOTAD Model
 - Objective Function
 - Maximize net return to land and management per acre
 - Constraints
 - Downside risk
 - Average annual deviations below target income of \$60 per acre
 - Water quality
 - Trace out risk/return frontier by changing level of allowable deviations below target income

Crop Rotation Analysis

- Risk and Return for each Crop Rotation
- Target MOTAD Frontiers
 - Profit Maximum
 - Low Risk

7

Continuous Wheat

	W-CT	W-RT
Net Return	\$92.39	\$107.75
Risk	5.98	2.43
Water Yield	1.000	0.917
Sediment Yield	1.000	0.403
Total Phosphorus	1.000	0.433

Wheat/Grain Sorghum/Soybean

	WGS-CT	WGS-RT	WGS-NT
Net Return	\$72.16	\$84.22	\$95.11
Risk	15.67	9.86	4.96
Water Yield	1.578	1.309	1.083
Sediment Yield	2.273	1.167	0.522
Total Phosphorus	2.085	1.150	0.655

9

Crop Rotation Summary

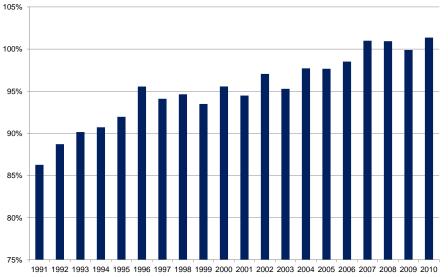
Target MOTAD Solutions

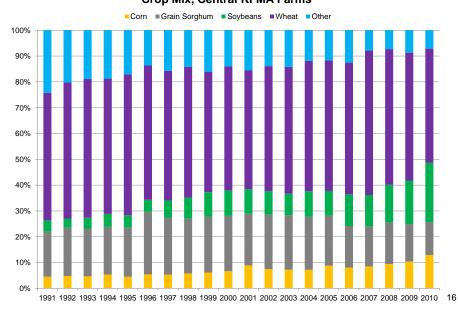

	Profit Maximum	Low Risk
Net Return	\$113.33	\$110.80
Risk	1.15	0.00
Water Yield	0.861	0.894
Sediment Yield	0.379	0.403
Total Phosphorus	0.408	0.452
W-RT	0.920	0.720
WGS-NT	0.000	0.200
AW	0.080	0.080

- Adding an alfalfa rotation to the crop rotation mix improved net return, lowered risk, and improved water quality.
- In addition to alfalfa, the optimal crop rotation mixes included continuous wheat under a reduced tillage production system and wheat/grain sorghum/soybean rotation under a no-till production system.

Further Analysis

- The results above suggest that there is a water quality benefit involved with reducing tillage.
- With this in mind, the analysis below used data for central KFMA farms with continuous data from 2006 to 2010 to examine cropping practices and financial performance gains for no-till production systems.
- Analysis involved 260 mixed tillage farms and 79 no-till farms.


Kansas Farm Management Association


▲ ASSOCIATION HEADQUARTERS

SATELLITE OFFICE

Crop Intensity, Central KFMA Farms

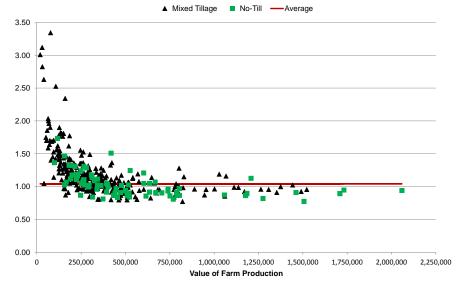
Crop Mix, Central KFMA Farms

15

KFMA Analysis

			Significantly
Item	No-Till	Mixed Till	Different
Crop Acres	1,775	1,344	yes
Harvested Acres	1,906	1,353	yes
Value of Farm Production (VFP)	\$548,017	\$365,600	yes
Net Farm Income (NFI)	\$148,436	\$88,329	yes
Gross Crop Value per Acre	\$342.37	\$298.41	yes

KFMA Analysis


			Significantly
Item	No-Till	Mixed Till	Different
Crop Intensity Index	1.074	1.007	yes
% Crop Acres Planted to Wheat	39.95%	52.06%	yes
% Crop Acres Planted to Feed Grains	31.00%	22.40%	yes
% Crop Acres Planted to Oilseeds	26.65%	14.88%	yes

17

KFMA Analysis

			Significantly
Item	No-Till	Mixed Till	Different
Economic Total Expense Ratio (ETER)	0.968	1.074	yes
Operating Profit Margin Ratio	0.2065	0.1603	yes
Asset Turnover Ratio	0.4274	0.3355	yes
Machinery Investment per Crop Acre	\$167.28	\$159.13	no
Machinery Cost per Crop Acre	\$63.31	\$70.78	yes
Labor Cost as a Percent of VFP	13.11%	16.08%	yes

Economic Total Expense Ratio, KFMA Farms

Contact Information

- Michael Langemeier
 - mlange@agecon.ksu.edu
 - Ag Manager Contributor Site (<u>www.agmanager.info</u>)
 - KFMA Newsletter
 - Recommendations for Further Reading